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I. INTRODUCTION

The well known quadratic convergent Newton’s method
for finding a simple root of the non-linear equation
f(x)=0 (1.1)

Where f:DcR—>R
interval D, is given by

is a scalar function on an open

~ F(xn)
07 ()

Xn+l =

Many iterative methods have been developed see [1-13] for
solving the equation (1.1) by using several techniques
including perturbation methods and quadrature formulae.
Noor [8] suggested the following algorithm which has
fourth order convergence

For a givenxg, Noor’s two step algorithm to compute

Xn+1 18

_, fxn)
= - e (1.3)
o fGn) | F(xn)—fyn)
it = f'(xn){f(xm—zf(yn)} a4

Recently, Jafar and Behzad [6] derived few variants of
King’s fourth order family [12]

1.€,

f(%0) + BT (V) } f (Yn) (L5)

f(xn)+(B-2) f(yn) ] F'(xn)
Where yp, is as given in (1.3)

Xn+1 = Yn —{

And, some of the variants suggested by Jafar and Behzad
[6] are
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2

. Y f(yn) f(Yn) f(Xn)

i. Xn+1 = Xp {1+ f(Xn)JrZ(f(Xn)] }f'(xn) (1.6)
2 3

. v |1, f0m) f(yn) f(yn)

il Xpy1 = Xp —| 1+ f(Xn)+2(f(Xn)] +(f(xn)]

» f(Xn)
f'(Xn) w7

o e ) [ F20) 18

iii. Xn41 = X [fz(xn)—Zfz(yn)] 700) (1.8)

) o | fGR)+flyn) | F(n)

W Fne = {f(xn)_f(yn)}f,(xn) 9

All the above formulae are having fourth order convergence
and vy, is as given in (1.3) only.

In the section 2 of this paper, we develop an iterative
method for solving (1.1) and its convergence criteria is
discussed. And also, few variants are derived from this new
method in the same section. Several numerical examples
are considered and compared with existing ones in the
concluding section.

Il. THE NEW ITERATIVE METHOD

Let '« ' be the exact root of the equation (1.1) in an open
interval D in which f(x)is continuous and has well

defined first derivative and let x, be the nth approximate to
the root

of (1.1) and
Where e, is the error at the nth stage and
f(a)=0 (2.2)

Expanding f(«) by Taylofls"r))series about x,, we have

(a—%p)

2
f(a) = f(xn)+(@—xn) (%) + f7(X0) e
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Assume e, is small enough and neglecting the higher
powers in (2.3), from (2.1) & (2.2)

We have
02 f"(xy)+ 26, T (%) +2F(Xq) =0 (2.4)
Which yields us
e =2 n) ! 2.5)
f'(Yn) 1+\/1—4f (yn)
f(Xn)

To make the denominator largest in magnitude, we take e,
as

f (%) 1

f'(yn) 14 \/1_ 4ff((XYn))
n

(2.6)

Taking 'e'in (2.1) as (n+1)th approximate to the root,
from (2.1) and (2.6), we now define the following
algorithm.

Algorithm 2.1:  For a given xg , compute the approximate
solution xp,1 by iterative scheme.

5 1 0n) 1
f'(yn)

Xn+1 = Xn — (2.7)

Where vy, is as given in (1.3)

This algorithm is free from second derivative and requires
two functional evaluations and one of its first derivatives.

The efficiency index of this method isY4 .

Theorem 2.1: Leta € D be a single zero of sufficiently

differentiable function f :D < R — R for an open interval

D. If xgis in the vicinity of o, then algorithm 2.1 has
fourth order convergence.

Proof: If 'a' be the root and X be the nth approximate to
the root, then expanding f(x,) about '«'using Taylor’s
expansion, we have
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2 3
f (X)) = f(a)+ f'(@)ep %f”((m% F(a)

e# flV en fV 0 e6
+E (a)+a () +0O(en)
en 11 (a)e§+£f (a)eﬁ

20 f (@) " 3 f(a)

1Y@ 4 1Y@ 5 o6
0@ P T () O

= ()

=f ’(oz)[en +02e§ + C3eﬁ +c4eﬁ +c5er‘r1’ +O(eﬁ)} (2.8)

i
Where ¢j == (=5,34..)
it f'(a)
And,
' _ 2 3 4 5
f'ixp)=f (a)[1+ 2coep +3C3en +4cen +5¢C5e), +O(en)}
(2.9)
2 2\,3
e, —Coen —(2¢q —2¢5)e
Now, f(xy) | En—C28n (2c3 z)n

f'(xn) —(3cq —7cpCg + 4cg)eﬁ' + O(eg)

(2.10)
From (1.3) and (2.10), we have

o+ cze% +(2c3 — ch)eﬁ +(3cqg —7CoCg + 4c§’)ef]1

Yn =
+0(ep)
(2.11)
2 2 3 37
, Coen —(2¢5 —2c3)en — (7cocg —5¢
f(yn) = f'(a) A 2 5 2
-3c4)en +O0(ep) |
(2.12)
(@) c2er2] —(ZCS —2c3)eﬁ
(24
f(yn) _ —(7coc3 —502 —3C4)er‘;' +O(eg)_

FOn)  f '(o:)[en +Cpe2 +CgeS + g6 +Cgen +O(eﬁ)}

2 2 3 3 4 5
=[cpen —(2¢5 —2c3)en — (7cpc3 —5€; —3c4)en +O(ep)]
x[1—-coep + (cg —03)er2, +(2cyC3 —cg —c4)eﬁ +O(ef{)]
Coep +(2c3 - ZCg)erZ] + (502 —7CyC3 + 3(:4)eﬁ - cgeﬁ
+(20§ ~ Zczcg)eﬁ - (5(:31 +3CoCy — 7(:503)(331

3 3 2\(n2 4
+(C5 -cacg)en +(2c3 - 2¢5)(c5 - c3)en

_+(2c§c3 —CoCy — cg)ef{ + O(eg)
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Thus, Thus,
21,2 3 3
f(yn) {czen +(2¢3 -3c) ey + (8c2 —10coc3 +3c4)en] Ll
o) | +o@m 0|, (1 4 10n))2
(2.13) f'(Xn) f(xn)
. 2 27,3 3\.4
From (2.13), we obtain 5| &0 ~C28n ~ (2c3 —2¢5)en —(3c4 —7CpC3 +4C5)ey
_[+oeR)
f(yn) _,_,| 2%+ (203 —3c5)ef +(8c3 ~10cyc3 ) 1-coep + (25 —2c3)ef +(6c,c3 — 4¢3 —3cq e
f(xn) +3c4)ed +0(ef) +0(en)
(2.14) |en- cpe2 —(2c3 — ch)eﬁ> —(3cq —7CpC3 + 4cg)eﬁ
1 +O(e5)
fiy))2 . 1| |Coen+(2c3-3c5)ef + "
1-4 =1+—<-4 2,2 3 3 -1
f(xp) (SCS ~10cyc3 +3c4)eﬁ y 1—{coen +(2c3 —2c5 )en + (4c; +3c4 —6C C3)en

4
+O(e,
02en +(2c3— 302) (€n)
2 21,3 3\o4
1 16| 2¢, (2 C3—3C2 )en _| &n —C2en - (2c3 —2c5)en —(3c4 — 7cpc3 +4c5)en
8 +0(ed)
+2Cy (802 ~10cy¢C3 +3c4)eq e
1+coep +(2¢3 - ch)eﬁ + (403 +3c4 — 60203)eﬁ1
c3e3 1 2c2 (2¢c 3c? )
3 64| 2" 21737 +((:2en +(2¢c3 — Zcz)zeﬁ +2¢5(2¢3 —ch)eﬁ
48 +(2c3— 302 )02en X
+2Cy (4c2 +3c4 — 60203)en + (02en

_+202 (2c3 - 202 ) en + c2 (2c3 - 202 ) en + cgef{ |

{256[c2 en ]}

- cze,% —(2c3 - 2c§)er3] —(3cy —7cpC3 + 4c2)en
+0(eR)

_ ) 3 3 1+coe, +(2¢c3 —cg)erz, +(4cg +3c4 —6CoC3
=1-2| cpen +(2c3 —3c5)en +(8c; —10cyc3 +3c4)en} 3 3.3 4
. +4cycg —4c; +¢5)en +O(en)
cgerzl +(4cocs —6c§)eﬁ + r 2
-2 € +Co82 + 20585 ce+(c+3c 6cc)e
2 2 4 4 2 4 n ™ %2%n 3%n —%2%n 2 4 —0L2t3)%n

(4c —12c5cg +4c., +16¢, —20c5c3 +6C9Cq)e

3 2-3 2 2 2-3 2%4/%n 2 2.3

=|—Cpen —c5en —(2coC3 +c2)en —(2c3 —202)en

—4f 4
CZe” + 02 = 902 Jen :| —Cp(2c3 - 2c§) ef—(3cq —7cycs + 4c§)e,‘11 +0(eD)

—1O[c2 en ]

1-2coep + (4c§ - 4c3)er2, +(12cpc3 —80:23 - 604)eﬁ - ) 2
- en + (2 —Cp)eh + (203 - c5 —02 +2c2 2c3)en

+0(en)
.15 = +(202 02 4c2 + 02 +3c4 —3c4 —2CoC3 —2CoC3
' —2CyC3 +70203)en +O(en)
1 =e, +(cc3 —2c3)eft +O(eR) (2.17)

5 1-Cpep + (202 — 2c3)e2 +
1+{1_4f(yn)j2=2 2en +(2¢5 3)en
f(*n) (6coC3 _402 —3c4)ed +0(el)
From (2.1), (2.7) and (2.17) we have the rate of
(2.16)  convergence of the method (2.7) is four.
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Case 2.1: By expanding /1—4% appearing in the
Xn

denominator of the method (2.7), we obtain
f(Xn) 1
X4l = Xn ——;
F0n) f(Yn)_'_[f(Yn)jZ_'_z[f(Yn)jS
f(Xn) f(Xn) f(Xn)
(2.18)

And, the above further yields

. f(yn)+2£ f(yn)fﬁ.{ f(yn)J3
f(Xn) f(Xn) f(Xn)

(2.19)

_ F(xn)
f'(xn)

Xn+1 = Xn

Considering up to first degree, second degree and third
degree terms of the expression lying within the brackets of
the formula (2.19), we have the following algorithms.

Algorithm 2.2: For a given xg, compute the approximate
solution Xp,1 by iterative scheme.

_ ) {H f(yn)}
f'(Xn) f(Xn)
(n=0,1,2,3....... )
Where yp, is as given in (1.3).

Xn+l = Xn

Theorem 2.2: Let a e D be a simple zero of sufficiently
differentiable function f :D < R — R for an open interval

D. If Xgis in the vicinity of « , then Algorithm 2.2 has
third order convergence.

Proof: As done in theorem (2.1), one can easily obtain the
error relation as

en— 2c§eﬁ + (4(:%5 —14cyc3 + 3c4)ef]1
+0(ep)
Which gives us

€1 € (2.21)
Therefore, the algorithm (2.2) has third order convergence.

Algorithm 2.3: For a given xg, compute the approximate
solution X1 by iterative scheme.

www.ijcsit.com

_ F(xn)
f'(xn)

Xn+1 = Xp

. f(yn)+2(f(yn)J2
f(xn)

Where yp, is as given in (1.3).

Theorem 2.3: Let « € Dbe a simple zero of sufficiently
differentiable function f :D < R — R for an open interval

D. If xgis in the vicinity of o , then Algorithm 2.3 has
fourth order convergence.

Proof: As done in theorem (2.1), one can easily obtain the
error relation as

a+eny =a+ey—[en+(Ccrcs —SCS)eﬁ +O(eﬁ)]
Which gives us

(2.23)
fourth

4
€n+1 ¢ €n

Therefore, the
convergence.

algorithm (2.3) has order

Algorithm 2.4: For a given Xg, compute the approximate
solution Xp1 by iterative scheme.

. f(yn)+2( f(yn)f+5( f(yn)J3
f(xn) f(Xn) f(Xn)

(2.24)

_ Fxn) 1
')

Xn+1 = Xn

Where vy, is as given in (1.3).

Theorem 2.4: Let a e D be a simple zero of sufficiently
differentiable function f :D < R — R for an open interval
D. If xgis in the vicinity of o , then Algorithm 2.4 has
fourth order convergence.

Proof: As done in theorem (2.1), one can easily obtain the
error relation as

a+eny =a+ey—[en+(cacs +4c§)eﬁ' JrO(e?’1 )]
Which gives us

en4q o e (2.25)

Therefore, the has fourth order

convergence.

algorithm  (2.4)

I1l. NUMERICAL EXAMPLES

In this section, several examples are considered which
are taken from [6, 11] and all the methods presented in this
paper are being taken to tabulate the computational results

below by using the stopping criteria| f (x,)| < 10715,
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TABLE. |
Number of iterations taken to obtain the root
Initial by applying the following methods
Equation and its root X
Guess "0
1.2 1.4 15 1.6 1.7 1.8 1.9 2.7 2.19
-4 6 4 4 4 4 4 4 3 3
-1 6 3 7 4 4 8 4 3 4
) 2 1 6 3 7 4 4 8 4 3 4
Lsin®x-x=+1=0 1.3 4 2 3 3 3 3 3 2 2
X =1.40449165 2 5 3 3 3 3 3 3 3 3
3 6 3 4 4 4 4 4 3 3
5 7 4 4 4 4 4 4 Err 3
-5 6 3 4 4 4 3 3 3 3
2 X -1 5 3 3 3 3 3 3 3 2
2.x7-e" -3x+2=0 0 4 2 2 2 2 2 2 2 2
X = 0.25753029 1 4 3 2 2 2 2 2 3 3
2 5 3 3 3 3 3 3 Err 3
A A A N
X = 0.73908513 17 4 3 3 3 3 3 3 3 g
2
4.xe* —sin2x+3cosx+5=0 -1 6 4 5 5 4 4 4 4 5
X = -1.20764783 -2 9 5 6 6 6 5 6 Err 5
2 .
5.x25in2x+ex SINXCOSX _og_ 4 7 5 6 g 5 5 g 5 5
X = 3.43717174 45 8 5 5 5 5 Err 5
4.62210416
-0.5 142 14 11 15 19 56 16 Err 49
-0.3 54 71 48 27 59 9 7 Err 17
6.3 +4x2 —10=0 1 5 3 4 4 3 3 3 3 .
X = 1.36523001 1.5 4 3 3 3 3 2 2 2 2
2 5 3 3 4 3 3 3 3 3
3 6 3 4 4 4 4 4 3 3

IV. CONCLUSION

The tabulated results show that the methods (1.4) to
(2.19) are converging at almost same pace compared to the
method (1.2). And, the algorithm (2.7) is also working

well except in the case that (1—4M] is negative.

F(xn)
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